COMPARISON OF THE DISSOLUTION RATES OF URANIUM OXIDES IN AQUEOUS SOLUTIONS, <u>Steven A. Steward</u> and Eleno T. Mones, Lawrence Livermore National Laboratory, Livermore, CA; and W. J. Gray, Pacific Northwest Laboratory, Richland, WA. The purpose of our work has been to measure the intrinsic dissolution rates of uranium oxides under a variety of well-controlled conditions that are relevant to a geologic repository and allow for modeling. The intermediate oxide phase, U_3O_8 , is quite stable and known to be present in oxidized spent fuel. Dehydrated schoepite, $UO_3 \cdot H_2O$, has been shown to exist in drip tests on spent fuel. U_3O_7 is stable in certain regimes. Equivalent sets of U_3O_8 and $UO_3 \cdot H_2O$ dissolution experiments allowed us to examine systematically the effects of temperature (25-75°C), pH (8-10) and carbonate (2-200x10⁻⁴ molar) concentrations at 8 ppm dissolved oxygen in the leaching solutions, equivalent to 0.2 atmosphere oxygen. Additional data on U_3O_7 at specified conditions were also obtained. Results indicate that $UO_3 \cdot H_2O$ has a much higher dissolution rate than U_3O_8 . Dissolution of $UO_3 \cdot H_2O$ shows a very high sensitivity to carbonate concentration. Present results show a 25 to 50-fold increase in room-temperature $UO_3 \cdot H_2O$ dissolution rates between the highest and lowest carbonate concentrations. This strong carbonate effect was demonstrated as well in earlier results on $UO_3 \cdot H_2O$ at low oxygen concentrations, which showed an even larger dissolution difference of almost 300 times. The intrinsic dissolution rate of unirradiated U_3O_7 and U_3O_8 is one to three times that of UO_2 under similar conditions. Work performed under the auspices of the Yucca Mountain Site Characterization Project (YMP) and a USDOE/AECL (Canada) International Agreement as part of the Civilian Radioactive Waste Management Program by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. Contact Author: Steven A. Steward Lawrence Livermore Natl Lab P.O. Box 808, L-325 Livermore, CA 94550 (510) 423-1767 FAX: (510) 423-4897 Co-Author: Eleno T. Mones Lawrence Livermore Natl Lab P.O. Box 808, L-322 Livermore, CA 94550 (510) 422-7076 Co-Author: Walter J. Gray Pacific Norhwest Lab P.O. Box 999 Richland, WA 99352 (509) 376-9693